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PRINCIPAL INVESTIGATOR: Abraham D. Stroock
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OBJECTIVE: 1) Develop general design principles and fabrication methods for synthetic
Vascular Materials. 2) Develop Vascular Biomaterials for the active control of the bio-synthetic
interface with specific applications in wound healing and tissue engineering. 3) Develop an
Artificial Leaf, and exploit this structure in a high performance system for heat management on
the human body, a Vascular Heat Belt.

Our second goal with regards to controlling mass transfer with biological systems has
broadened to include the development of microfluidic scaffolds for tissue engineering. This goal
is complementary in two ways to our primary goal of developing active wound dressings: 1)
parallel development of fabrication methods in biological materials that are relevant to the
wound healing context, 2) development of a chemically programmable interface with living cells
that may be relevant to regeneration of skin for burn victims.

APPROACH:
The key to our experimental approach to the creation of Vascular Materials is the development of
material syntheses and methods of microfabrication that allow us to embed microfluidic structure
directly within hydrogels. For the operation and characterization of systems (Artificial Leaves,
Wound Dressings, and Tissue Scaffolds) based on Vascular Materials, we have developed
experiments to control and monitor fluxes of heat and mass in an automated fashion. In parallel,
we have developed a theoretical basis for the design and operation of this new class of active
materials.

ACCOMPLISHMENTS (for the entire 1.5-year period):
Highlights:

1) Development of techniques to embed functional microfluidic structure within organic
hydrogels.
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2) Development of a complete theory and experimental characterization of heat and mass
transfer in transpiration from hydrated materials. This work is a foundation our development of a
flexible heat pipe.

3) Development of an Active Wound Dressing that allows for external management of
the mass exchange and mechanical stimulation of the wound bed.

4) Development of the first microfluidic scaffold for three-dimensional cell culture and
tissue engineering.

Expanded accomplishments:
We have made important progress on several fronts in the development of Vascular

Materials for the management of the chemical and physical properties of the bio-synthetic
interface.

In the development of Artificial Leaves (AL) to act as wicks in flexible heat pipes, we
have completed the assembly and calibration of an environmentally controlled chamber in which
to characterize the leaves, and we have begun to test hydrogels for use as the core material in the
AL (Figure 1). Our method of characterizing the function of leaves depends on careful
calibration of the convective transfer of heat and mass at the evaporative surface. Our current
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experiments allow us to evaluate the chemical potential of the water throughout the system
(Figure I B) during steady state transpiration. With this measurement, we are able to know the
mechanical state (i.e., the pressure or tension) in the liquid water in the leaf without requiring any
direct mechanical connection. We are now in a position to be the first group to observe a
synthetic wick move liquids under tension. This experimental system will also serve for the
characterization of heat transfer in prototypes of heat pipes.

We have begun testing materials for use as wicks. Our initial tests have involved wicking
water at ambient pressure with no hydraulic load. In these tests, the material itself acts as a
substantial resistance to mass transfer, leading to the equivalent of many atmospheres of pressure
drop across itself. The plots in Figure IC compare the measured transpiration through a
macroscopically porous wick (GDP) that presents negligible resistance to flow, and a molecular
gel (PEG) that presents a massive resistance to flow. The despite the large resistance, the gel
maintains fluxes that are within 20% of those of the paper. These results indicate that PEG gels
are promising candidates for use as high performance wicks. We are pursuing tests of PEG gels
with hydraulic loads in the geometry shown in Figure IA.
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Figure 3: Active Wound Dressing (AWD). (A) Schematic diagram of operation of AWD on model
wound bed. (B) Optical micrograph of cut cross-section of AWD showing bilayer structure of PDMS and
porous poly(hydroxyethyle methacrylate) (pHEMA). (C) Scanning electron micrograph of porous
pHEMA. (D-F) Illustration of the state of a model wound bed saturated with dye before (D), after
extraction (E), and after subsequent delivery of a second dye (F).

3



In our work toward an Active Wound Dressing (AWD), we have made important steps in
the development of materials, fabrication, and in vitro characterization. Figure 2A presents the
mode of operation of this dressing. As originally proposed, our system is a hybrid of a hydrogel-
based interface with the wound and a silicone backing. Figure 2B shows a cross-sectional cut of
a AWD, showing the bilayer structure formed by a silicone (PDMS) backing and a porous
hydrogel interface with the wound bed. We have focused substantial attention on the character of
the hydrogel layer, such that we achieve well-controlled exchange of both molecular- and
cellular-scale material with the wound bed. Figure 2C presents a scanning electron micrograph
(SEM) of the surface of I mm-thick sheet of poly(hydroxyethyl methacrylate) (pHEMA) formed
by phase separation polymerization. We have developed a thermally initiated process that leads
to uniform porosity on the scale of 10-100 ýtm over areas of 100 cm 2. This porosity is important
to allow for convection of insoluble materials from the wound bed; the uniformity of the
interfacial is crucial to ensure uniform convective flux across the wound bed. This fabrication
strategy is compatible with the addition of coherent microstructure via photopolymerization of
neat pHEMA within the sponge in order to deliver spatially confined streams of fluid to the
wound bed.

We have characterized of mass exchange mediated by AWDs. For this purpose, we have
operated the AWD on model wound beds. One such system is a film of calcium alginate
hydrogel that mimics both the modulus and the permeability of tissue. Figure 2D-F show an
experiment run on this model wound bed. We initiate the experiment by infiltrating the model
wound bed with a dye (Figure 2D). We then apply the AWD with a stream of clean solution to
extract the dye from the substrate (Figure 2E). Finally, we perfuse the AWD with a solution of a
second solute in order to deliver to the same substrate (Figure 2F). The extraction and delivery
can also be run simultaneously. We have also demonstrated the ability to quantify the
composition in the efflux from the AWD; this capability allows for diagnostic intervention
without removing the dressing.
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Over the past year, we have initiated another exciting theme in the development of
Vascular Materials: Microfluidic Scaffolds for 3-D cell culture and tissue engineering. This
theme complements our work on AWDs as it addresses the longer term challenge of growing
replacement tissues for victims of injuries such as bums. In this application, the microfluidic
network provides convectively-aided exchange of mass within a cell-seeded volume defined by a
biological material. To accomplish this goal, the microfluidic structure must be entirely
embedded in a material that is convectively impermeable and highly diffusively permeable. We
note that this is a distinct situation from that of the AWD for which the desirable material is
convectively permeable, such that non-diffusive species can be exchanged. To the best of our
knowledge, we are the first group to have created an appropriate structure.

We have achieved an appropriate microfluidic structure in calcium alginate gels of
extremely low solid-fractions (4% w/v). The diagrams in Figures 3A-B illustrate modes of
operation that we have used to characterized mass transfer in a-cellular Microfluidic Scaffolds.
In these experiments, we use the microfluidic network to deliver (Figure 3A) and extract (Figure
3B) dyes from the three-dimensional volume defined by the gel. The fluorescence micrographs
in Figure 3C show the power of this system for controlling the temporal evolution of the
chemical state within the gel: In the first three frames on the left, fluorescein is delivered over a
period of I hour; in the fourth frame, a stream containing rhodamine and no fluorescein is
injected such that the dyes are exchanged simultaneously. Results reported previous illustrate the
ability to substantially increase the rate of exchange of both small (fluorescein) and large
(dextran) molecules with a material via an embedded microfluidic vascular structure (Cabodi et
al., JACS 2005). We are currently adapting our methods to be sterile and generally cell
compatible. Our efforts are focused on engineering the growth of cartilage in vitro. We are
using primary bovine articular chondrocytes and equine mesenchymal stem cells within our
microfluidic scaffolds. Our goal is to grow a monolithic tissue plug that contains the bone-
cartilage interface.

Significance:
1) New techniques for embedding functional microstructure within soft, hydrated

organic materials form a basis for an array of applications in thermal and chemical
management.

2) Prototype of a convective wound dressing opens the way to a new active mode of
wound management.

3) First microfluidic scaffold for 3D tissue culture allow unprecedented control of
chemical environment experienced by cells in physiologically relevant architectures.
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